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ABSTRACT 

The usual definition of the capacity of a discrete- t ime,  

memoryless  Gaussian channel is generalized to the case  

of a collection of such channels. Each member of the 

collection is specified by a pair  (A,s1) where A rep -  

resents  the deterministic t ransmission matrix, possibly 

infinite -dimensional, and s1 is the covariance matrix 

of the additive Gaussian noise. The definition is just i -  

fied by showing that the capacity is the supremum of the 

attainable ra tes  
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Aeronautics and Space Administration under' Grant NsG-2-59 to the 
University of Michigan and by the National Science Foundation under 

2 Grant GK-716 to the University of California, Berkeley. 
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1. Introduction 

Suppose a communications system transforms a vector -valued 

input signal x into a vector-valued output signal y according to an 

equation of the form 

y = A X ~ Z  

where A is a linear transformation and z is a Gaussian noise vector. 

Suppose further that neither the transformation A nor the covariance 

mat r ix  !2 of z a r e  precisely known, but a r e  known only to belong to a 

certain specified class.  Then each possible pair (A ,Q)  defines a c e r -  

tain Gaussian channel, and the collection of all pairs  (A,R) determines 

a class  of channels. 

and then prove that the supremum of attainable ra tes  is equal to the 

capacity. 

Fo r  such a c lass ,  we define a channel capacity 

Section 2 contains the proof of the direct  coding theorem when 

x, y and z a r e  vectors of fixed finite dimension. Section 3 contains 

the proof of the converse, and Section 4 extends the results of Sections 

2 and 3 to infinitely many dimensions under the conditions that the 

operators A a r e  Hilbert-Schmidt and the noise is white noise. 

It wi l l  be noted that the A's may be integral operators (of finite 

rank to  meet  the conditions of Section 2, o r  Hilbert-Schmidt to meet  

the conditions of Section 4) carrying L2 fundtions defined on a finite 

interval.into L functions on a finite interval (not necessarily the same 
2 
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interval). The conditions imposed here  require  that the channel be 

rese t  to "zero state" af ter  each t ransmission before being reused. 

In the special case  of convolution type operators it is more  natural  to 

l e t  the t ime interval for transmitting and receiving grow continuously 

without limit (Ref.6). The different but related problem of defining a 

capacity and proving a coding theorem for  c lasses  of channels in that 

ca se  is the subject of a paper with the same  title, Part 11. 

The general outline of the proof used here  is taken f rom 

1 
Blackwell, Breiman and Thomasian. 

2. Prel iminaries  

We consider communication channels and c lasses  of channels 

that can be described as follows. 

ceived signal y a r e  (column) vectors of dimension p, with real-valued 

components, and a r e  related by 

A transmitted signal x and a r e -  

y = A x + z  

where A is a p X p matr ix  and z ,  the noise, is a Gaussian random 

(column) vector of dimension p .  We assume Ez = 0 and denote the 

covariance matrix of z,  Ezz' ,  by Q. A channel is  a pair  ( A , R ) .  

Specification of a channel determines the statist ics of the random vector 

y once the vector x is given. 

channels satisfying the following condition: there  a r e  numbers 

We a r e  concerned with classes  
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0 < a, 0 < Q < CY such that for each (A ,Q)  E 4 
0 1  Y a, aOy al, 

(1) I [ A  I I f a, where I I A (  I is the operator norm of the matrix A 

llAxll < - a 1 1  C - allxll  for all p-vectors x, where llxll is the (i .e. ,  

usual "distance norm"). 

XIS2 x 
(2)  cyo f - < CY for all p-vectors x .  

1 
llxl12 - 

Henceforth when we speak of a c lass  4 of channels these conditions 

wi l l  be assumed. We shall sometimes refer  to the se t  of indices y 

itself as -& . 
n The n-extension of a channel (A,a) is denoted by (A, Q )  ; it 

ca r r i e s  n-sequences of p-dimensional input vectors into n-sequences 

of p-dimensional output vectors according to  

where the z .  a r e  mutually independent random Gaussian-vectors, each 

with mean zero  and covariance matrix a. 

1' x2' n s equences of x1 s by u = (x 

1 

It is convenient to denote 

, x ) and sequences of y 's  by ... 
, yn), and to le t  U (V ) respectively, be the se t  of all 

u(v) . The i t h  - component of x(y) is written x (y ); thus 5 is the i t h  - 
x, and similarly y component of the input vector 

ponent of y 

n n  v = (YIY Y2' .*.  
i i  i 

i 
k 

is the i t h  com- - 

k' 
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r? The average power constraint on the input implies that we a r e  

J 

allowed only to send signals u via the n-extension channel which satisfy 

< n M ,  where M is a fixed constant. M is the 2 n  i 2  
IiuII = zj=,Cp=, (x.1 J - 

maximum allowable average signal energy pe r  use of channel. 

Insofar as it is  reasonable to do so,  we shall use  the notation and 

1 
definitions of Blackwell, Breiman and Thomasian in what follows. A 

( G , E ,  n) code with constraint s e t  E for a c lass  4 of channels for n 

G > 1, E > 0 and n a positive integer, is a se t  of [ G I  ( [ G I  denotes - 
“greatest  integer contained in G ” )  distinct sequences u - ... 

k- (Xkl’Xk2’ 

x ) y  k = 1, 2,  * * *  , [ G I  lying in E c u , and a se t  of [ G I  disjoint 

subsets B * * *  

such that 

kn n n 

of the collection V of all sequences v = (y 8 Yn) 2 ’ n 1’ 1’ 

for i = 1, 2,  * * * ,  [ G I  and all 

where P (Blui) ,  B C  Vn, U . E  U is the probability of the se t  B of 
Y i n  

output sequences, given the input sequence u and the channel (AyS2) . 
i Y 

The P probabilities a r e  always given by pn-variate Gaussian density 

functions, and P (Bi Iu.) w i l l  be defined for  all y if B. (and hence its 

Y 
C 

Y 1 1 

C 

1 
complement B. ) is any Lebesgue measurable subset of the pn-dimen- 

sional Euclidean space V . We call  B. the decoding se t  f o r  the code 

word u . .  

n 1 

Suppose a (G, E ,  n) code is given, then when a code word u. 
A 

f rom this code is transmitted 

received. If v falls in some 

I 

over the channel an output word v is 

B it is decoded as u Thus v is  k k’ 

-5 - 



1 

L 

correct ly  decoded if and only if it falls in B., and by the definition of a 

(G, E ,  n) code the probability of e r r o r  is uniformly dominated by E . 
1 

A number R > 0 is an attainable ra te  for a c lass  4 of channels 

d where e + 0 as if  there  exists a sequence of codes (e , E , n) for  

n + 00. The quantity e( &) for  the class  4 is defined to be the supre-  

Rn 
n n 

mum of the attainable rates for -4 . 

A 
= c , 

We choose to define the capacity c of a c lass  of channels 4 
artif ically in terms of the mutual information, and then prove that c 

P 1 ... the supremum of the attainable rates.  Let  q(u) = q(x Y x1;x2, 
1 
1’ 

1 , x P ) be an  np-variate probability density function, to be ;Xn’ * * *  n 
x;;. . . 
regarded a s  providing a probability distribution for  the input vectors u, 

which a r e  to be statistically independent of the noise z .  Let  p,(vlu) be 

the np-variate Gaussian density function determined by P (Blu) ,  

Then 

B C  V . Y n 

P(V) = J PY(V Iu) 4 (4 du 

(where the integral is actually an  np-fold integral over RPn) defines a 

probability density function for output vectors v .  The mutual information 

for  the input density q(u) and the channel (A$) is defined to be 
Y 

where the dependence on q(u) is not made explicit. It turns  out that w e  

-6 -  



. 
I 

need consider only Gaussian densities for the input density p(u), a s  

might be expected since the additive noise is Gaussian. Let  & ! ? b e  the 

class of p-variate Gaussian density functions with mean zero which have 

the property that their  covariance matr ices  each has t race l e s s  than 

or  equal to M e  It wi l l  be convenient sometimes to le t  S e d  denote 

both a Gaussian density p(u) belonging to J and its p X p covariance 

matrix, and this should cause no confusion. 

We now define the channel capacity for the class  4 of channels 

subject to an average allowable signal power M to be 

where E J is the expected value of J according to the distributions 

given by p(u) and p (v/u) with u and z statistically independent. Let 

r ( S , A , R )  be the mat r ix  A S A '  t R .  Then it is essentially well known, 

but will  be verified below, that 

Y Y  Y 

Y 

E J = log 
Y Y  

where I I? I , I R I denote the determinants of the matr ices  

Hence, 

and R. 

-7 - 



3. Proof of the Coding Theorem 

The coding theorem a s s e r t s  that for any class  -& of channels as 

defined in the previous section, the supremum of the attainable ra tes  is 

at leas t  as great  as the capacity of the class  of channels as defined by 

Eq. (l), i. e. , C(4) > - C ( &  

Our proof is a modification of the proof given by Blackwell, 

Breiman and Thomasian in (1) for a class  of finite-state channels and is 

based on their  fundamental lemma with adaptations to  take ca re  of the 

particular s t ructure  of the channels we a r e  considering. 

results and methods of Thomasian. 

We also use 

2 
The proof proceeds by a sequence 

of lemmas,  the first two of which a r e  taken directly f rom the above 

mentioned references.  

Lemma 1 to follow applies to a la rger  c lass  of channels than 

were defined in the previous section; in particular,  it applies to any 

channel in which each input vector x determines a probability density 

for the output vector y, p(y I x) . This generality is needed temporarily 

in Lemma 2, as wi l l  be seen. We shall denote such a channel in the 

customary way, by (Ul, V1, p(y1x)). 

a (Ul, V1, p (y (x )  channel, but not vice versa.  

Each (A$) channel is, of course,  

Lemma 1. 

V1, p(y1x)) with any fixed input density 
1’ F o r  any channel (U 

function q(u), and for any integer G > - 1 ,  CY > 0, and measurable subset 

-8 - 



E of U there  exists a (G, E ,1 )  code with constraint se t  E where E 
1' 

sa t  is f ies 

-CY 
E = G e  t P { J ( x , y )  ICY} t P{EC}, 

where 

and 

2 Proof. See Thomasian, Theorem 2. 

Lemma 2. 

Let (A$) , Y E  6' = (1, 2,  * - *  , L}, be a finite class of channels, 
Y 

and let q(x) be an input probability density function determining p (x ,y)  

and J (x, y) . 
Y 

Y 

1 L  
(a) Define a channel (U 1s v1S P ( Y I x ) )  by ~ ( ~ 1 x 1  = - P ( ~ 1 x 1  and L y = l  y 

le t  q(x) determine p(x, y),  J (x ,y )  . Then fo r  all  CY > 0, 6 > 0 

(b) Let E c U be a fixed constraint set .  Then for  any cu > 0, 6 > 0 ,  1 

G > 1 , there  exists a (G, E ,  1) code for 6' with code words in E such - 

-9-  



E = L G e  -cy t L 2 e -6 t L P { E C }  t C L P ( J  < c u t  6 ) .  
1 Y Y -  

Proof. The proof is a trivial modification of that of Lemma 3 (1). We 

have stated more  than we need, for  only par t  (b) of the lemma is used. 

The following lemma gives the known resul t  for the expected 

value of the mutual information for a Gaussian channel. 

Lemma 3 .  F o r  any channel (A$) 

E J ( x , y )  = log 

where I' is the mat r ix  A S A '  t Q. 

Proof. y is a Gaussian random vector with mean zero  and covariance - 
matrix, 

I' is nonsingular, since Q is nonsingular. Hence 

The Gaussian random vector z = y - A x  has covariance matrix R and 

mean zero,  hence 

-1 0 -  



Thus J (x ,y)  i s  given by 

The first t e r m  is a constant; the expectation of the second t e r m  is 

hence the lemma is proved. 

We now obtain an estimate a s  to how rapidly the distribution of 

J (u ,v)  peaks around its mean value. 

of one given in (2)  . 
The calculation is an  extension 

Lemma 4. 

Let  (A,n) be a fixed channel and consider its n t h  extension. - 
Let q(x) be a Gaussian distribution for x with covariance mat r ix  S ,  

n 
and let q (x 0 .  , x ) = !J q(x.) . Let A , R  and q(x) determine 

J (u ,v)  = Z J(xi,y.)  = C log 

n 1 
n P(Yi I Xi) 

1’ n 
. Then, for any 6 > 0 ,  

1 

Proof. We have already observed in the preceding lemma that 

-11- 



where + 

I 

' -1 
1 -1 i 1 y i r  yi 6 .  = - -(y - Axi)'Q (yi-  A X )  t - 1 2 i  2 

, -  

Now P{J(u,v) < E - J (u ,v)  - n6) - 

= ~ ( 9 6 .  < - n a )  = P{ -(n6 t 9 6 . 1  > 0 )  
1 -  1 -  

-tn6 - n t c  , f o r  any t > 0 ,  - = e  E e  

since the 6 .  a r e  statistically independent and identically distributed, 

and where 6 is a .random variable with the same distribution as each 

si 

1 

. We now put h(t) = E e - t S ,  so  that 

(3)  
- t 6  P{J(u ,v)  - < E J ( u , v )  - n6)  - < (e h( t ) )n .  

In order  to  compute h(t) we introduce the Gaussian random 

vector w = column [ x , y ]  of dimension 2p. Since x and y have mean 

zero,  w has mean zero,  and its covariance mat r ix  can be written 

-1 2 -  



where the matrix is a partitioned matrix with p X p blocks. f is given 

by Eq. (2) to be 1 [ y ' r  -1 y - (y -Ax)'Q -1 (y - A x ) ] .  If we define partitioned 

matrices 

Y 

and 

z =  

we can wri te  

25 = W ' Y W  - W'ZW. 

Then, 

-t6 1 1 W'W -lw) h(t) = E e = 
(2.)PI w I 1'2 

t 
2 

X exp[ - -  (w'Yw - w'Zw)]dw 

where the integral is a 2p-fold integral over  RZp. It follows that 

-1 3 -  



1 1 
h(t) = l e x p  ( - 7 wlQ(t)w) dw 

(2rr)PI w p2 

where the 2p X 2p matrix Q(t), which is given by 

Q(t) = W - l  t t (Y -z) , 

is nonsingular for  t l e s s  than some t > 0 .  Substitution for Y ,  Z and 

W, and use of the fact that r = ASA' t gives 

0 

By a standard resu l t  for partitioned mat r ices ,  

2 -1 IQ(t)WI = 11-t I? M A ' (  

2 2 
= Ir - t  A S A ' I  = lr-ll l n t ( i - t  ) A S A ' ~  

= 1n1/~(1+ (1 - t  )a - 1 1 2 ~ ~ ~ i ~  )n I -112 1 / 2  

= la I I I t  (i-t2)n-1/2ASAln -1/2 I 

Let  Al, * . *  , A be the eigenvalues of the positive semi-definite mat r ix  
P 

-14 - 



I 

. 

2 P - 1/2 I = r I ( l t ( 1 - t  )X.). 1/ 2 
52 -1/2ASA152 . Then, ! I t  (1 -t2)n-1/2ASA'n 1 

t I ]521/2,  
- 1/2 

Since r = MA1 t n = n 1 / 2 ~ n - 1 / 2 A S A ~ f i  

and hence, 

2 
p 1 t  (1 - t  ) A .  

1 
IQ( t )WI = II 

i 
l t h  

1 Then h(t) 5 
3 P / 2  ' 

(1 - t L )  

.. 

If w e  put 

6 -1 - 2 - t  
P is equal to 

2 
then O <  t < 1 ,  and (1-t  ) e 

-1 5 -  



- x/2 
-X 

for x > 0 ,  we have 
1 

- Since (1t z x )  e - < e 

1/ 2 

e -6 th ( t )  - < exp (-: [( 1 t  $) - 1 1 )  

which, combined with the inequality ( 3 ) ,  proves the lemma. 

The same so r t  of argument is now used to obtain an exponential 

bound on P{EC} . 

Lemma 5. 

Let x. ,  i = l ,  . . *  , n, be independent identically distributed 
1 

p-dimensional Gaussian random vectors with mean zero  and covariance 

mat r ix  S . Let the t race  of S be equal to M .  Then, for any 6 > 0 ,  

Proof. Tr(S) ,  the t r ace  of S ,  is equal to 

-1 6 -  



2 - L 
Zp E (xi) = El Ix. I I = M for all i .  Let x be a random vector with 

j =1 1 

the same distribution as the x., then 
1 

since the x. a r e  mutually independent. By a standard calculation, 
1 

where p , p a r e  the eigenvalues of S , for t small  enough s o  that 

all the factors a r e  positive, whether S is non-singular o r  singular (i. e . ,  

1' P 0 

the equation holds even if some of the p. = 0 ) .  -Since 
1 

P 
n (1 -2tpi) 1. 1 - 2 t ( 5  t . * *  t p ) = 1 ' -  2 t M ,  

P 

yields. 1 6 
2 M ( 6 t M )  Putting t = - 

-17 - 



c 

which combined with the inequality (4) proves the lemma. 

Only the case  where 4 is finite in the following lemma on 

approximation is needed for Theorem 1, but the s t ronger  resul t  is 

needed fo r  Theorem 2 and it is convenient to put it all together. 

Lemma 6 .  

Let E > 0 be fixed arbitrari ly.  Then, there  is an  S E  F.$ such 

that (1) T r S  < M, (2) log - > c(-&) - E  for y c  4. 
In 

Y 

Proof. First consider a finite s e t  of y’s 7$‘, 4 ’ = (1, 2, , L}. By 

the definition of C( $) one can find an S e a d s u c h  that 0 

Lf T r  S < M, there  is nothing to prove. So suppose T r  S = M .  F o r  

is a continuous function of S (where the topology fixed y ,  log 

0 0 
Ir p2 
I *  p2 

2 
on kd is given, say,  by regarding each S a s  an  element of R p  with the 

usual Euclidean no rm) .  One can therefore change S slightly to give 
0 

1 S E J s o t h a t  T r S  < M while 
1 

-1 8 - 



This can be accomplished, f o r  example, by writing S = O'DO where 

0 is an  orthogonal mat r ix  and D is diagonal and positive semi-definite, 

0 

and decreasing one of the positive diagonal elements of D .  

Now consider an  a rb i t ra ry  class  -& meeting the conditions 

stipulated in the previous Section. A tr iple (S, A, a) ,  S E ?A , (A, R )  E 

can be regarded as a point in 3p - dimensional Euclidean space where 
2 

0 J 2 
each of the mat r ices  is  a point in Rp . The product s e t  of all S E  

with all (A, S2) E -4 is a conditionally compact set, because the conditions 

on the mat r ices  A, on the positive semi-definite matr ices  S, and on the 

positive definite matr ices  R guarantee that this product se t  is  bounded 

is continuous on the in R3' . Now the function t; = log 

closure 0 of Q and hence is uniformly continuous on Q . As before, 

one can find 

2 Ir(S,A,S2) 11'2 
- J R  p2 - 

S ~ d s u c h  that 
0 

If T r  S < M, there  is nothing to prove. If T r  S = M y  we can find, by 
0 0 - 

the uniform continuity of 5 on P, a number 6 > 0 such that 

E 
(G(S,y) - 5 ( S o , y ) l  - < 

before, change S 

T r  S < T r  S = M .  S satisfies the conditions of the lemma. 

for all y i f  11s -Soli - < 6 .  We can then, as 

into S in such a way that (1s - soli 1. 6 and 0 1 1 

1 0 1 

We now prove the direct  half of the coding theorem for  a finite 

c lass  of channels. 

-1 9 -  



Theorem 1 

If = { ( A , R )  }, y = 1, 2,  . * ,  L ,  then e( dl) > - C( $ I ) .  

Y 

Proof. 

8 = C( dl) - R .  

P > 0 , and 

Let R be any positive number less  than C( $I) and put 

By Lemma 6 one can find S E such that T r S  = M- P, 1 J 1 

f o r  all Y E  . For  the n-extension channel le t  E be the set  of all 

input sequences u such that ilull = Z (Ixill 5 n M .  Then, by 

7 4 1  n 
2 n 

A 
P - n -  2 A 2 

where M = M - p  and Lemma 5, P{I lu( l  > - n ( M t P ) }  < - e 

A P  nR e e P = -  - l o g ( l t i )  > 0 .  Nowdefine G = e  , ~ = n ( R t - ) ,  8 6 = n -  8 ’  
M 

It follows f rom Lemma 2 applied to the n-extension channels that there  

is  a (G,  E , n) code for  -4 I with n 

L 

y= 1 

Since E J (u,v)  = n E J (x,y),  it follows f rom Eq. (5) and Lemmas 3 
Y Y 

and 4 that 

- 2 0 -  



e e e 
v 2 4 P{J (u,v)  < n(R t z ) }  = P{J (u,v)  = n(R t -) - n - }  - Y 

e 
Y 4 < P{J (u ,v)  < E J (u, v) - n -} - v - 

Then, f rom ( 6 ) ,  

nP - -  n e  - -  
2 

+ L e  
2 

E < ( L t L  ) e  
n -  

which approaches zero a s  n -+ oc, . Since R is any number less  than 

C( 8) the theorem is proved. 

To extend the theorem to a rb i t ra ry  classes  4 we need to es - 

tablish an approximation inequality, and a probabilistic bound on output 

power to make the approximation inequality applicable. 

.Lemma 7 .  

A A  
Let  (A$),  ( A , R )  be two channels and let  u be an  input n-sequence 

of vectors x . Let  p 
i A, n 

the output signal sequence v , given u, for  the n-extension of the (A, 2) 

channel, and PA f’{v/u} be the corresponding density for the 

{v/u} be the np-variate probability density for  

A A  
( A , n )  A, $2 

-21- 



2 
channel. Then, for  those v satisfying llvll < nT - 

t CY 0 
t aM] ~ ~ A - A ~ ~ }  

where the norm signs on the matr ices  denote operator norms,  and where 

i. e . ,  
z'slz 

CY , a, M a r e  numbers such tha t :  Q < and 
O -  11z I l2  0 

The first t e r m  enclosed within absolute value signs on the right side of 

(9) is dominated.by 

-1 -1 A A -1 = 52 (Q - Q)52 , this in turn is dominated by 

-22 - 



enclosed within absolute value signs on the right side of (9) is dominated 

Now, using these inequalities to dominate the absolute value of the 

argument of the exponential in (8), using I Ix 

llyll < - T gives the lemma for n = l .  Since 

and similarly for PA ~ { v l u } ,  the lemma fol 

2 

A, n 

Lemma 8.  

I 5 M and requiring 
n 

ows immediately. 

Let  (A ,n)  be any channel satisfying the conditions (1) and (2) of 

Section 2. Let  u be any input n-sequence satisfying llull < - nM. Then 

the output sequence satisfies 

2 

-23 - 



Hence, A < - 

< - 

P{2 zn I 

I .  

2 2 
2 Z n ~ ~ z i ~ ~  t 2a nM 

2 2 
z ( I 2  t 2 a  n M > n(2a  M t 2pctlf 2))  - i 

1 '  by Lemma 5 and the fact that pct < T r  S2 < - pct 

The direct  half of the coding theorem for an a rb i t r a ry  number of 

0 -  

matrix channels follows. 

Theorem 2. 

Let 4 be a class  of channels ( A , Q )  satisfying the conditions 
Y 

, (1) and (2) of the Section 2 .  Then 

Proof. Let  R be any positive number less  than C($ ) and put 2 0 =  C ( 4 )  - R .  

By Lemma 6 one can find S E such that T r  S = M -p, p > 0, and 1 1 

-24 - 



. 

for all Y E  4 . 
We now pick a finite subset -&t of 4 such that for every 

h 
(A,S2)€ -d there is an ( A , n ) e d '  with the property that I I A - A ( (  - < q ,  

IlS2 - S2 1 1  f 'I. This can be done because 4 is a bounded subset of a 

finite -dimensional Euclidean space and hence is totally bounded. 

the inequality ( lo) ,  and since C( & I )  > - C ( - d ) ,  C( -dl) > - R t 0 .  Hence, 

by the calculations of Theorem 1 there is an (e , E , n) code for 

such that : 

A 

By 

78 Rn I 

n 

(a) The code words u =  (x , x ) a r e  constrained to l ie  in E , 
1' n n 

2 
L e . ,  llull - < n M .  

(b) The probability of e r r o r  is uniformly dominated by 

where p is independent of n ,  and L is themumber of elements in 41 . 
'I 

Note that the 0 appearing in (1l)is C( $I) - R ,  whereas we can take the 

- < C( -e1) - R ,  which actually - 2 8 appearing in (11) to be 
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weakens the inequality and hence is permissible. 

however, depend on the approximating class  -& . 
8 does not then, 

We now consider the use of the code words and decoding se t s  

belonging to  the (eRn, E' , n) code for 4 ' with the la rger  c lass  of 
n 

A b  A 
channels 4. Let (A,R)c and (A,R)c 4' and such that IIA-AI( - < q, 

4 A 

- $2 1 1  5 q. Let u be a code word for  I and B the corresponding 

2 
decoding set. Let F = { V I  llv112 5 nT} where T =  2 a  M t 2pc2 t 2 .  

Then 

1 

ByLemma 8, P {F'lu} 5 
A, $2 

t P {F'Iu}. 
A, $2 

1 1 n/2 - 

J 

By Lemma 7 ,  

- 2 6 -  



Hence, using the fact that 

f f p <  ( R  P 
0 -  Y 

for  all Y E  , we have by substituting for  E ' , n k 

T t a 2 M t a l / M T  t f i t a M ] . )  

0 t ( ~ ) p e x p [ n [  2a 0 2 ff 

3 - n  - 2 
8 

- n  - 
8 t L  e 

2 

' 1 ' 1  rl 
L 

1 

It is evident that the exponentials in (14) a r e  all of the form:  

-"W1 - K 2 d  
where K and K do not depend on q ,  where K is posi- 

1 2 1 
e 

tive and K is non-negative. 2 

Consequently for  q sufficiently small  the (eRn, E ', n) code for  n 

4 with E , E , n) code for + 0 a s  n +  00. R N  $' is  a n  (e 
n n 
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I .  

Thus ĉ ( $)  > - R for  every R < C(.&), which proves the theorem. 

4. Converse of the Coding Theorem 

In this section we prove the weak converse of Theorem 2 .  The 

proof is a trivial  modification of the one given by Ash (3 )  for the case  

where the c lass  -& consists of a single element. We shall  need the 

following lemma which is a straightforward extension of a resul t  due to 

Fano (4, p. 144). 

Lemma 9 .  Le t  q be the distribution function of a p-dimensional random 

variable y,  with covariance matr ix  I?. Then 

where H is the entropy function and I I?I is the determinant of I'. 

equality is achieved if  q is Gaussian. 

The 

Corollary. Let  (A$) E 

input vectors x .  Le t  y 

Y 
4. Let q be a distribution on the p-dimensional 

be the output vector. Then I (4) = E J (x ,y )  
Y Y, q 

where S is the covariance matrix of x due to 

' Y' 
the distribution q . Again, the equality is acheived if q is Gaussian. 

Proof. We have 

-28 - 



Now the random variable y = Ax t z has covariance matrix I?= r ( S ,  A ,R 

so that by Lemma 9, 

) Y Y  

Also, H (ylx)  = H(z) and z is a Gaussian random variable with c o -  
Y, ¶ 

variance matrix so that by Lemma 9 

1 
2 H(z) = - (p t log ( 2 ~ ) ’  I I ) . 

Combining the above equality with (15) gives the result. 

Lemma 10. If there  exists a (G, E ,  n) code for -& with G an integer, 

and with average power constraint M, then 

n C ( 4 )  + log 2 
log G € 

1 - E  

Proof. Again we use the letter q, with various affixes to denote dis - 
tribution functions on the input space Rp,  and the expected mutual 

information corresponding to  a distribution q and a channel Y E  4 will 

be denoted by 

... Let  the codewords be given by u 1 = (x 11’ * * -  , x  In ), * . *  9 UG = (XG1, * XGn)* 

We will say that x.. is a component of the codewords. 
1J 

Also if 
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P 

i i 
1 -  2 

2 , z .  zi  = (Zi’ * * -  for i= l ,  2 i r e  any two vectors in RP, we say z < z 
1 

1 1 

if and only if z < z for  every i .  Now for each p-vector x le t  

, G, j = l , * * *  , n  
1 p(x) = - (number of components x.., i = 1, 

which a r e  < x.) 
Gn U 

- 

and for j = 1, . *  , n le t  

1 
q.(x) = - (number of components x.. , i = 1, - , G  

J G U 

which a r e  < x .  ) - 

1 
n j=1 J 

Then a(x) = - Zn q.(x) so that by the concavity of I (see (5),  p. 131), 

we have for each y E 4 

Also if S is the covariance matr ix  on the input vectors induced by then 

the t race  of S C M and by the corollary for each (A$) E 4 
Y - 

Now let  q(u) be the pn-dimensional distribution which assigns probability 

, G. 
1 - to each of the codewords ui, i = l ,  * *  G 

Then (see 5, p. 125) we 

have for each Y E  4 
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Finally if we express IY(q) as 

then by Fano (5, p. 187) we have 

H (ulv)  - < log 2 + 6 log G 
Y, 

so that for each Y E  4 , 

The chair  of inequalities (17) - (20)  yields 

log G < n l o g  Y 

1 - E  
- 

for  each Y E  &. Taking the infininum over y e 4  first and then the 

’ supremum over SE, J on both sides of (21) gives the result .  

Theorem 3 .  e(4) 5 C($). 

Proof. Let R be an attainable ra te  for 4 , s o  that there  is a sequence 
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4 with E * 0 as n *  co. By Lemma10 of (e , E , n) codes for  nR 
n n 

Dividing both sides by n and taking the l imit  as n + co we see  that 

R 5 C ( & .  

5. The Case of co-Dimensional Channels 

I .  

In this section we extend the results of the previous sections to 

to the case  where the matrix A ,  and hence the input vector x and the 

output y a r e  co-dimensional. Fo r  simplicity, we assume that the 

additive noise is white. 

then the output vector y is given by 

Thus if  x is the input vector to the channel A ,  

y = A x + z  

1 2  
where z = (z , z , * e * )  is an  co-dimensional random vector with inde- 

pendent components each of which is a Gaussian random variable with 

ze ro  mean and variance u . The n-extension of A is defined as before 
2 

so that it c a r r i e s  an n-sequence of input vectors u =  (x , x ) into an  1’ n 

n-sequence of output vector v = (y , yn) with 1’ 

where the z a r e  mutually independent. i 
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As before 4 w i l l  represent a class  of channels, i. e . ,  a c lass  

of matr ices  A.  We assume the following: 

(1) Each matrix A E  4 ,  is Hilbert-Schmidt, i. e. , if A = {a..} then 
1J 

2 
Z. . a . . <  w .  
1, J 1J 

(2) For  any two Hilbert -Schmidt matr ices  A = {a..} and B = {b..}, 
1J 1J 

2 2 
define I lA-Bl l  = Z. . l a . .  - b.. l  . Then 1 1  1 1  defines a met r ic  (in 

1, J 1J 1J 

fact a no rm) .  We assume that 4 is a totally bounded subset of the 

met r ic  space of all Hilbert -Schmidt matr ices .  

As before we impose the average input power constraint M .  We 

define in a similar manner,  a (G, E , n) code for  4 , and an  attainable 

ra te  for  4 . Again let  C( 2 ) be the supremum of all attainable ra tes .  

t race  is less  than or equal to M .  For  each A €&and S E  dl , the matr ix  

Now let  A b e  the se t  of all oo-dimensional covariance mat r ices  S whose 

Y 
A S A '  

Y Y  

be A Y  > A:> - * * *  . We define the capacity of 

is symmetric and positive semi-definate. Let its eigenvalues 

to be 
1 -  

A 
We now proceed to show that C ( 4 )  = C ( 4 ) .  

k k 
For  any matrix B =  {b..} and positive integer k, l e t  B = {bij} 

1J 
k k 

i j  ij i j  be the mat r ix  given by b. = b if i < k ,  j < k and b = 0 otherwise. 

Fo r  S E  

- - 
k k k' 

Y Y Y 
and A E -& we denote the eigenvalues of A S A by 
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> A’* > * *  . Note that S k e J .  , 2  - 

Lemma 11. Let S E d be a fixed, diagonal matrix, i. e . ,  if S > { s 

then s . .  = 0 for  i # j . 
such that for all k > k 

} i j  

Then for  each E > 0 there  exists k = k ( E )  C co 
1J 0 0  

and for all y E A 
0 - 

Proof: Since S is adiagonal, the operator represented by A SA’ 
Y Y  

dominates the operator represented by A S A . Hence the eigen- 

values of A S A ’  dominated the eigenvalue of A S A . Now 

k k k ’  k k ’ k  k 
A S A = P A S A P for some projection operator P . Hence 

Y Y Y Y 

k ’  
Y Y 

k l  
Y Y  Y Y 

k k k k’ 
Y Y Y Y 

the eigenvalues of A S A’ dominate the eignenvalues of A S A . 
Therefore A? > A!’ for  each i , k  and y .  Hence 

1 -  1 

i=l 

- 9 S Y Y  Y ”’> Y - 1 ( T r a c e  A S A ’  - T r a c e ’ A  S A 
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Let A = {aij}. Then using the fact that S is diagonal we obtain 
Y 

k k 

00 00 00 00 

2 
- < 1 s j j  C t C s j j  1 ai j  

j =k t l  i=l j= l  i=k t l  

Since the matr ices  A E f8 a re  uniformly bounded, there  is a number 
Y 

N < 00 such that ZW a. .  2 < N f o r  every A E 4. Now S E ?d so that 
i=l ij Y 

00 E 
s . .  < M .  Hence there  is a k < 00 such that Zj= 

s j j  5 E .  
1 5 j= l  JJ  - 

Also since the s e t  is totally bounded there  is k < 00 such that 2 
E 

for  every y E 
2 

Z:Oo a < -  i=k t1 i j  - 2M 
. Then ko  = max(k  , k ) satisfies 

1 2  
2 

Theorem 4. e (&)  >, C($) 

Proof. Let  R < C($) be fixed. 

rate. By definition of C($) there  exists S E d such that 

We want to show that R is  an attainable 

hY 00 

2 1 log (lt2) > - R t  8 

i=l 

for some 8 > 0 for every Y E  4 . By choosing an appropriate basis 

for  the input and output space we can assume that S is diagonal. We 
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. 
V 

note that the matrix representation of a channel relative to this new 

basis may be different, but this does not change C( $) which is defined 

in t e rms  of the eigenvalues and these a r e  invariant under change of 

basis. 

that there  is a finite k such that 

Since S can be assumed diagonal, it follows from Lemma 11, 

k k k’ 
1 Y Y 

fo r  every Y E  -& . But the A!’ a r e  the eigenvalues of the matrix A S A 

which is effectively a k-dimensional matr ix  channel s o  that f rom (23)  and 

Theorem 2 we conclude that C($ ) > - R t 8/2 and the theorem is proved. 
A 

The detailed proof of the weak converse of Theorem 4 is  laborious 

but straightforward and hence only a sketch is given. 

Theorem 5 .  c ( 4 )  f C(.&) .  

Proof: 

codewords be u = (x = * *  

disjoint decoding se t s  be B 

and y . 

Let there  be a (G ,  E ,n )  code for 4 with G an integer. Let the 

... ) and let  the 
J 3 UG= (XG1, ’ XGn 

1’ 

1 11’ 

. Then P (B? Iu.) < E for each i ’ BG y 1 1 -  

Clearly the same codewords and decoding sets  define a (G, E ,  n) 

-d of -& . Now we can find a kl = \(E) < co , code for every finite subset f 

and disjoint s e t s  B * * * ,  B (see 5) such that P (BCIu.) C ZE for all 1’ G y 1 1 -  

5 4 and such that the B. a r e  cylinder sets  determined by the f i r s t  f 1 
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components of the output. Thus we obtain a (G, ZE, n) code for df with 

the same codewords and with decoding sets  given by the first k outputs. 

Next we find a k2= k (E) < 00 such that the codewords u 

components of the x.. to  f rom u * * e  

df. Thus zero  satisfy, P (B Jui)  < 3 E for  all i =  1, , G and all Y E  

the codeword u * * *  

-& which effectively uses only the first k = max(k  k ) (G, 3~ , n )  code for 

inputs and output components. 

1 

* * *  , uG obtained 2 1’ 

by setting all but the first k 
’ UG 2 1J 1’ 

C 

Y 

1’ 
, B determine a and deconding sets  B G ’ UG 1’ 

f 1’ 2 

By Lemma 10 therefore,  

Taking the infimum of both sides over all finite subsets -& f of &yields 

nC($) t log 2 
log G 

1 - 3E 

A reproduction of the proof of Theorem 3 now gives the result. 
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